Using unsupervised machine learning methods of analysis for model variable selection in cancer risk prediction for PLHIV: a study protocol

Authors: Josefin Nilsson¹, Olof Elvstam^{2,3}, Isabela Killander Möller¹, Philippe Wagner⁴, Johanna Brännström^{1,6}, Aylin Yilmaz^{7,8}, Fredrik Månsson⁹, Magnus Boman^{10,11}, Christina Carlander^{1,5,12}

Affiliations: ¹Unit of Infectious Diseases and Dermatology, Dept. of Medicine Huddinge, KI ²Dept. of Translational Medicine, Lund University ³Dept. of Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University of Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University of Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University of Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Västmanland, Uppsala University Infectious Diseases, Växjö Central Hospital ⁴Center for Clinical Research, Växjö Central Hospital ⁴Center for Clinica

Data acquired
from the
National HIV
Registry
Sweden
(InfCareHIV),
LISA, Population
Registry,
Migration
Registry, Death
Registry,
Prescribed Drug
Registry and the
Patient Registry

Data preprocessed and cleaned Optimal number of clusters calculated using the CH-index and silhouette score

K-means clustering and hierarchical clustering methods implementation

Dimensionality reduction by PCA, UMAP and t-SNE techniques implementation

Decision trees used to aid interpretation of the clusters and relationships to determine the variable importance

Conclusion

Using an exploratory methodology integrating multiple analytical techniques, the results can be used optimise variable utilisation in cancer prediction models for people living with HIV (PLHIV).

This approach can enhance the understanding of risk factors for specific cancer types in PLHIV to improving prediction of cancer and accuracy.

Aims

The aim of the study is to analyse and compare variable associations using a variety of unsupervised machine learning elevate understanding and and improve the selection of variables in the model to enhance cancer prediction.

Background

Risk of developing certain cancers is higher and may appear at a younger age among PLHIV

Yet there is a lack of guidelines for cancer screening recommendations specifically for PLHIV

Unsupervised machine can enhance model development and provide deeper insight into variable characteristics and relationships, recognising patterns which may have been overlooked by conventional statistical analysis methods

Future plans

The goal is to use the information gained about the variables through this analysis to build risk prediction models for clinical use using supervised machine learning methods

Josefin Nilsson, MPH, PhD Student

Karolinska Institutet

Departement of Medicine
Huddinge
josefin.nilsson@ki.se

