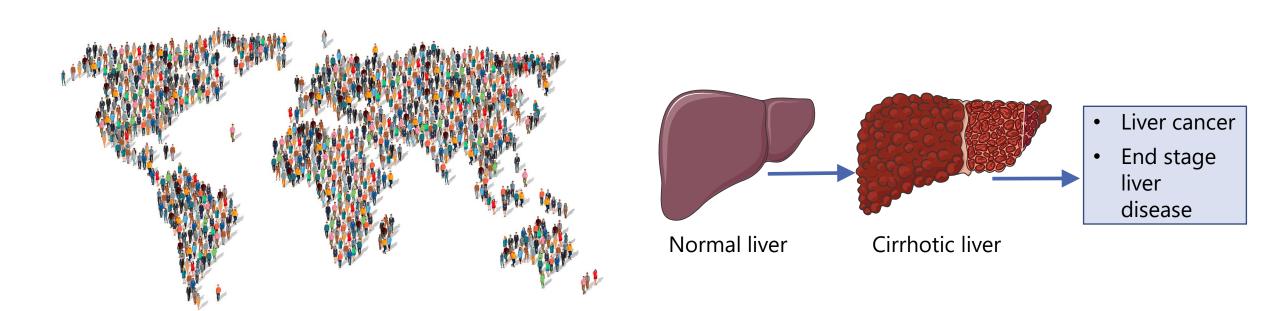
Hepatic flares after nucleos(t)ide analogue cessation in HBeAg-negative hepatitis B: results from the Nuc-Stop Study

M. Holmberg^{1, 2}, O. Dalgard^{2, 3}, S. Aleman⁴, N. Berhe^{1, 5, 6}, H. Desalegn^{5, 7}, N. Weis^{8, 9}, L. Heggelund^{10, 11}, L. N. Karlsen¹², P. Brugger-Synnes¹³, H. E. Simonsen¹⁴, D. H. Reikvam^{2, 6}, A. Johannessen^{1, 2, 6}

¹Vestfold Hospital, Tønsberg, Norway, ²University of Oslo, Oslo, Norway, ³Akershus University Hospital, Lørenskog, Norway, ⁴Karolinska University Hospital, Stockholm, Sweden, ⁵Addis Ababa University, Addis Ababa, Ethiopia, ⁶Oslo University Hospital, Oslo, Norway, ¹St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia, ⁶Copenhagen University Hospital, Hvidovre, Denmark, ⁰University of Copenhagen, Copenhagen, Denmark, ¹⁰Vestre Viken Hospital, Drammen, Norway, ¹¹University of Bergen, Bergen, Norway, ¹²Stavanger University Hospital, Stavanger, Norway, ¹³Ålesund Hospital, Ålesund, Norway, ¹⁴Nordland Hospital, Bodø, Norway.



Chronic hepatitis B infection (CHB)

~254 million living with CHB

~1.1 million deaths/year

Gastroenterology 2022;162:757-771

CLINICAL—LIVER

Off-Therapy Response After Nucleos(t)ide Analogue Withdrawal in Patients With Chronic Hepatitis B: An International. **Multicenter, Multiethnic Cohort (RETRACT-B Study)**

Grishma Hirode, 1,2,3 Hannah S. J. Choi, 1,2 Chien-Hung Chen, 4 Tung-Hung Su, 5 Wai-Kay Seto, 6 Stijn Van Hees, Margarita Papatheodoridi, Sabela Lens, Grace Wong, Sylvia M. Brakenhoff, ¹¹ Rong-Nan Chien, ¹² Jordan Feld, ^{1,2,3} Milan J. Sonneveld, ¹ Henry L. Y. Chan, ¹⁰ Xavier Forns, ⁹ George V. Papatheodoridis, ⁸ Thomas Vanwolleghem, ⁷ Man-Fung Yuen, ⁶ Yao-Chun Hsu, ¹³ Jia-Horng Kao, ⁵ Markus Comberg, ¹⁴ Bettina E. Hansen, ^{1,3} Wen-Juei Jeng, ¹² and Harry L. A. Janssen, ^{1,2,3} on Behalf of the RETRACT-B Study Group

¹Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada; ²Institute of Medical Science, University of Toronto, Toronto, Canada; ³The Toronto Viral Hepatitis Care Network, Toronto, Canada; ⁴Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; 5National Taiwan University Hospital, Taipei, Taiwan; 6Department of Medicine and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Special administrative regions of China; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Medical School of National and Kapodistrian University of Athens, Athens, Greece; 9Hospital Clinic Barcelona, IDIBAPS and CIBEREHD, University of Barcelona, Barcelona, Spain; 10 The Chinese University of Hong Kong, Hong Kong, Special administrative regions of China, 11 Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the

Original research

Discontinuation of nucleot(s)ide analogue therapy in HBeAg-negative chronic hepatitis B: a meta-analysis

Samuel Anthony Lachlan Hall , ¹ Sara Vogrin, ² Olivia Wawryk, ² Gareth S Burns, ¹ Kumar Visyanathan, 2,3 Vijaya Sundararajan, 4 Alexander Thompson 1,2

material is published online only. To view, please visit the journal online (http://dx.doi.or 10.1136/gutjnl-2020-323979).

Gastroenterology Departmen Ptv Ltd. Fitzrov. Victoria. ²Department of Medicine. The University of Melbourne, Melbourne, Victoria, Australia Infectious Diseases Department, St Vincent's Hospital Melbourne Pty Ltd, Fitzrov Victoria Australia

Department of Public Health,

La Trobe University, Melbourni

ABSTRACT Background and aims Sustained virological

suppression and hepatitis B surface antigen (HBsAq) loss have been described after nucleot(s)ide analogue (NA) discontinuation for patients with hepatitis B e antigen (HBeAg)-negative chronic hepatitis B (CHB). We performed a meta-analysis of the clinical outcomes after NA discontinuation for HBeAq-negative CHB. Methods Studies involving NA cessation in HBeAgnegative CHB individuals with a median follow-up of ≥12 months were included. Participants were HBeAqnegative at the time of NA initiation, Random effects meta-analyses were performed for the following clinical outcomes: (1) virological relapse (VR) at 6 and 12 months: (2) clinical relanse (CR) at 6 and 12 months and

ignificance of this study

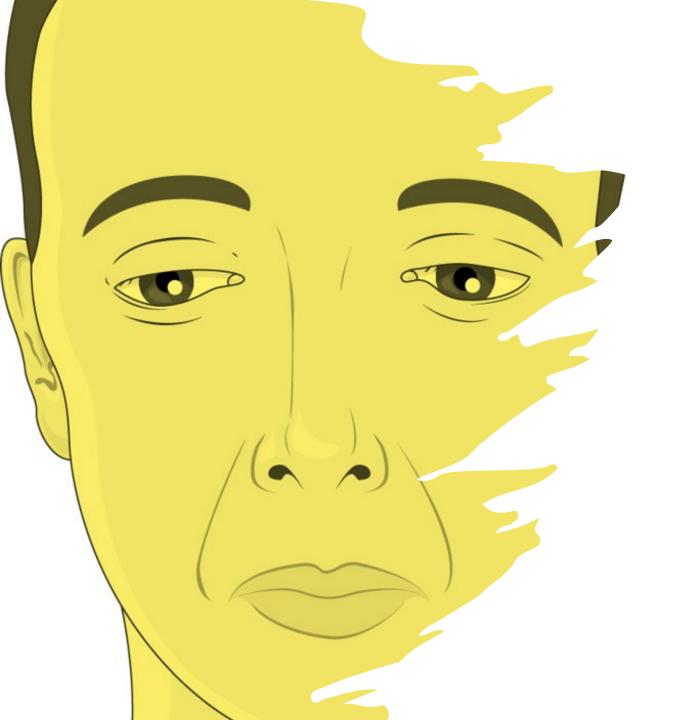
What is already known on this subject? Finite therapy for chronic hepatitis B has been identified as an area of unmet clinical need (European Association for the Study of the Liver (EASL) quideline)

- A number of studies have reported that longterm viral control may be maintained in a significant minority of patients off-treatment. with some patients achieving hepatitis B surface antigen (HBsAg) loss.
- However, protocol design has varied between studies, with differences in patient population. study eligibility, clinical outcomes of interest

GASTROENTEROLOGY 2012:143:629-636

Sustained Responses and Loss of HBsAg in HBeAg-Negative Patients With Chronic Hepatitis B Who Stop Long-Term Treatment With Adefovir

STEPHANOS J. HADZIYANNIS.** VASSILIOS SEVASTIANOS.* IRENE RAPTI.* DIMITRIOS VASSILOPOULOS,5 and EMILIA HADZIYANNIS!


Department of Medicine and Hepatology, Henry Dunant Hospital, [©]2nd Academic Department of Medicine, Hippokration Hospital, and the [‡]Molecular Biology Laboratory of the Liver Unit at the Evoenidion Hospital, National and Kapodistrian University of Athens, Athens, Greece

BACKGROUND & AIMS: Little is known about the bio-immune-mediated chronic liver damage.8 Ideally, treatchemical and virological effects of stopping long-term ment of CHB should be aiming at HBV elimination, but nucleos(t)ide analogue therapy for hepatitis B e antigen because this is not a goal easily achievable with currently (HBeAg)-negative patients with chronic hepatitis B (CHB). available therapies, a generally accepted treatment ap-METHODS: We performed a cohort observational study, proach is potent and durable suppression of HBV replifollowing 33 HBeAg-negative patients with CHB, undecation, which could lead to prevention of cirrhosis and tectable serum HBV DNA, and normal levels of amino-hepatocellular carcinoma (HCC).9 However, in HBeAgtransferases after long-term (4 or 5 years) treatment with negative CHB, discontinuation of finite treatments of up adefovir dipivoxil (ADV). All patients were followed for to 3-year duration with oral nucleos(t)ide analogues 5.5 years; follow-up visits included measurements of se- (NUCs) is followed by virological and biochemical rerum alanine aminotransferase (ALT), hepatitis B surface lapses in the majority of patients and the benefits gained antigen (HBsAg), and HBV DNA monthly for the first 6 by therapy are lost. 10-18 Therefore, current treatment months and every 3-6 months thereafter. Various factors guidelines 4,19 for HBeAg-negative CHB recommend longwere measured at baseline, the end of treatment (EOT), term/indefinite oral antiviral therapy without develop-

Check for update Received: 21 March 2024 | First decision: 20 April 2024 | Accepted: 26 June 2024 DOI: 10.1111/apt.18147 AP&T Alimentary Pharmacology & Therapeutics WILEY

Clinical trial: An open-label, randomised trial of different re-start strategies after treatment withdrawal in HBeAg negative chronic hepatitis B

```
Asgeir Johannessen<sup>1,2,3</sup> | Dag Henrik Reikvam<sup>2,3</sup> | Soo Aleman<sup>4</sup> | Nega Berhe<sup>1,2,5</sup> |
Nina Weis<sup>6,7</sup> | Hailemichael Desalegn<sup>1,8</sup> | Tore Stenstad<sup>1</sup> | Lars Heggelund<sup>9</sup> |
Ellen Samuelsen<sup>10</sup> | Lars Normann Karlsen<sup>11</sup> | Karin Lindahl<sup>4</sup> | Frank Olav Pettersen<sup>2</sup> |
Jonas Iversen<sup>2</sup> | Elisabeth Kleppa<sup>2</sup> | Signe Bollerup<sup>6</sup> | Anni Assing Winckelmann<sup>6</sup> |
Pascal Brugger-Synnes<sup>12</sup> | Hans Erling Simonsen<sup>13</sup> | Jan Svendsen<sup>14</sup> |
Anne-Marte Bakken Kran<sup>15,16</sup> | Marte Holmberg<sup>1</sup> | Inge Christoffer Olsen<sup>17,18</sup>
Corina Silvia Rueegg<sup>17</sup> | Olav Dalgard<sup>3,10</sup>
```


Stopping treatment can be harmful

- Hepatic flares
- Hepatic decompensation
- Death

Aim

 To describe the flares and identify predictive factors for flares after nucleos(t)ide analogue (NA) cessation in a prospective, multicenter trial

This knowledge may contribute to a better tailored treatment strategy for future patients with chronic hepatitis B

The Nuc-Stop Study

- 127 patients enrolled
- All HBeAg-negative and non-cirrhotic

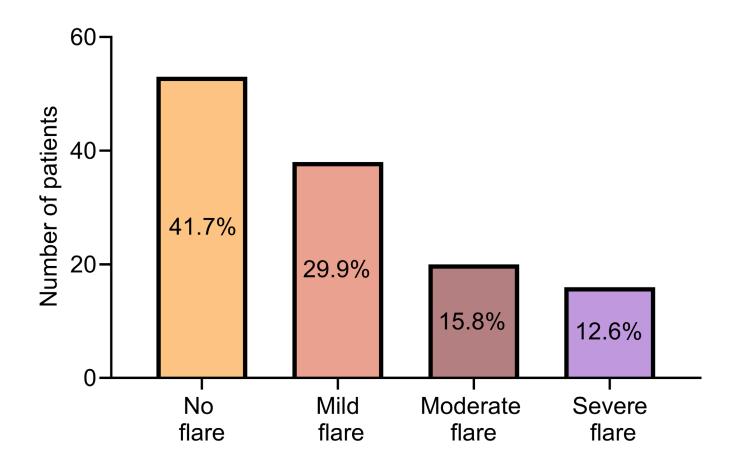
From 11 centres in Norway, Sweden, Denmark, and Ethiopia

- Prospective study
- Originally designed to investigate if it is beneficial to let patients undergo a prolonged flare to achieve functional cure
- Stopped NAtreatment and were followed up for 36 months

Flares - definitions

ALT increase above 2x upper limit of normal (ULN) or above 2x baseline

GROUP	ALT
Mild	2 – 5 x ULN or 2 – 5x baseline
Moderate	5 – 20x ULN or 5 – 20x baseline
Severe	>20x ULN or > 20x baseline



Baseline characteristics

Number of patients	127	BMI (kg/m²)	24.6 (21.8-26.7)	
Age (years)	43 (38-51)	Tenofovir/Entecavir (%)	76.4 / 23.6	
Male (%)	67.7	Months on NA	45.0 (32.4-75.5)	
African/Asian/European (%)	40.9 / 43.3 / 15.8	ALT (U/L)	29 (23-40)	
Genotype A/B/C/D/E/unknown (%)	22.8 / 13.4 / 14.2 / 32.3 / 7.9 / 9.5	qHBsAg (IU/mL)	2213 (762-6105)	

More than half of the patients experienced a flare

Severe flares

- 1. All tenofovir
- 2. Occurred early
 - Median time to severe flares was 2.0 (IQR 1.8 3.0) months
 - All within 6 months
- 3. Restart of NA therapy

ALT normalized

&

HBV DNA suppressed

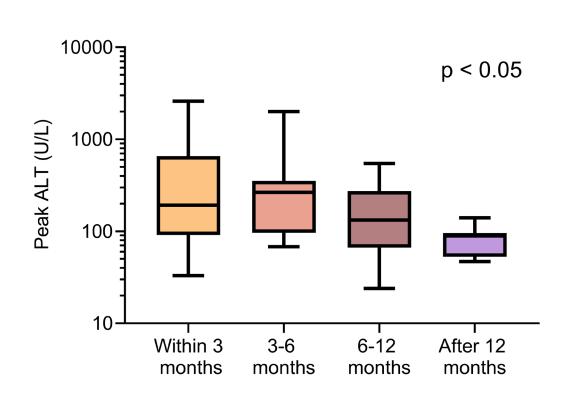
41.7%

flare

29.9%

Mild

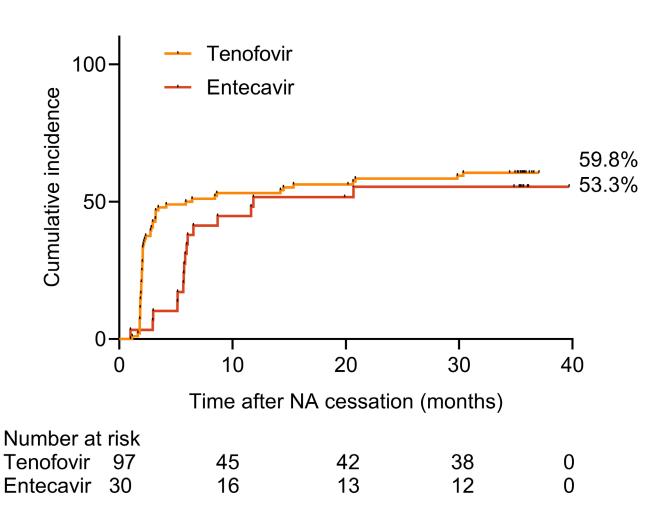
flare


Moderate

No patients developed decompensated liver disease

Severe

Most flares occurred early, and early flares were more severe


Timing	N (%)	Peak ALT (U/L) Median (range)
≤ 3months	44 (59.5)	192 (33-2600)
3-6 months	14 (18.9)	265 (68-2000)
6-12 months	8 (10.8)	133 (24-546)
> 12 months	8 (10.8)	89 (47-140)

Total n=74

Median time from treatment stop to first flare was significantly shorter for patients who stopped tenofovir (p<0.01)

NA	Months (IQR)		
Tenofovir	2.1 (1.9-3.2)		
Entecavir	5.8 (5.1-7.6)		

Flares had no impact on qHBsAg decline

Flare	qHBsAg loss or >1log ₁₀ decline			
	Yes N (%)	No N (%)		
No flare	9 (17.0)	44 (83.0)		
Mild/moderate	5 (8.6)	53 (91.4)		
Severe	3 (18.8)	13 (81.3)		

Predictors of hepatic flares

Variable	Unadjusted			Adjusted		
	OR	95% CI	p-value	OR	95% CI	p-value
Age (years)	1.05	1.01-1.09	0.02	1.07	1.02-1.12	0.01
Sex (male vs. female)	0.98	0.46-2.09	0.97			
Ethnicity (Asian vs. Non-Asian)	1.40	0.68-2.88	0.36			
Genotype (B/C vs. other)	2.36	0.98-5.68	0.05	2.29	0.87-6.02	0.09
BMI (kg/m²)	0.97	0.89-1.06	0.47			
Tenofovir vs. entecavir	0.77	0.34-1.75	0.53			
Treatment duration (months)	1.00	0.99-1.01	0.70			
qHBsAg (log ₁₀ IU/mL)	1.61	1.07-2.42	0.02	2.09	1.20-3.62	0.01

qHBsAg and flares

Baseline qHBsAg (IU/ml)	Total number of patients	Flare ALT>2xULN or 2xBA	Flare ALT>5xULN or 5xBA	Flare ALT>20xULN or 20xBA	qHBsAg loss	qHBsAg decline (1 log ₁₀) or loss
≤ 100	12	4 (33.3%)	2 (16.7%)	1 (8.3%)	8 (66.7%)	11 (91.7%)
100-1000	29	17 (58.6%)	13 (44.8%)	6 (20.7%)	3 (10.3%)	4 (13.8%)
>1000	86	53 (61.6%)	21 (24.4%)	9 (10.5%)	0	2 (2.3%)

Patients with qHBsAg ≤ 100 have the highest chance of qHBsAg decline and the lowest risk of flares

Conclusions

- Flares occurred in more than half of the patients and were associated with age and baseline qHBsAg level
- Severe flares occurred in 12.6%, all within 6 months, and normalized quickly after restart of NA therapy

Acknowledgments

Participating centres

- Akershus University Hospital
- Copenhagen University Hospital, Denmark
- Karolinska University Hospital, Sweden
- Nordland Hospital
- Oslo University Hospital
- Stavanger University Hospital
- St. Paul's Hospital, Ethiopia
- Vestfold Hospital
- Vestre Viken Hospital (Bærum)
- Vestre Viken Hospital (Drammen)
- Ålesund Hospital

Supervisors

- Asgeir Johannessen
- Dag Henrik Reikvam

Funding

 South-Eastern Norway Regional Health Authority (Helse Sør-Øst)

Thank you!

